Matrix form of the Bi‐CGSTAB method for solving the coupled Sylvester matrix equations
نویسندگان
چکیده
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملABS METHOD FOR SOLVING FUZZY SYLVESTER MATRIX EQUATION
The main aim of this paper intends to discuss the solution of fuzzy Sylvester matrix equation
متن کاملOn the solving of matrix equation of Sylvester type
A solution of two problems related to the matrix equation of Sylvester type is given. In the first problem, the procedures for linear matrix inequalities are used to construct the solution of this equation. In the second problem, when a matrix is given which is not a solution of this equation, it is required to find such solution of the original equation, which most accurately approximates the ...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملabs method for solving fuzzy sylvester matrix equation
the main aim of this paper intends to discuss the solution of fuzzy sylvester matrix equation
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Control Theory & Applications
سال: 2013
ISSN: 1751-8652,1751-8652
DOI: 10.1049/iet-cta.2013.0101